首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56598篇
  免费   6359篇
  国内免费   4885篇
电工技术   2384篇
技术理论   1篇
综合类   6250篇
化学工业   8417篇
金属工艺   4979篇
机械仪表   6412篇
建筑科学   6756篇
矿业工程   2931篇
能源动力   1345篇
轻工业   3444篇
水利工程   1617篇
石油天然气   4303篇
武器工业   1045篇
无线电   2762篇
一般工业技术   7153篇
冶金工业   1929篇
原子能技术   658篇
自动化技术   5456篇
  2024年   253篇
  2023年   1488篇
  2022年   2633篇
  2021年   2854篇
  2020年   2304篇
  2019年   1835篇
  2018年   1714篇
  2017年   1917篇
  2016年   2122篇
  2015年   2112篇
  2014年   3067篇
  2013年   2883篇
  2012年   3675篇
  2011年   4163篇
  2010年   3172篇
  2009年   3392篇
  2008年   2945篇
  2007年   3764篇
  2006年   3562篇
  2005年   3012篇
  2004年   2392篇
  2003年   2183篇
  2002年   1874篇
  2001年   1539篇
  2000年   1317篇
  1999年   1071篇
  1998年   877篇
  1997年   656篇
  1996年   602篇
  1995年   498篇
  1994年   440篇
  1993年   305篇
  1992年   240篇
  1991年   247篇
  1990年   167篇
  1989年   128篇
  1988年   104篇
  1987年   53篇
  1986年   49篇
  1985年   42篇
  1984年   31篇
  1983年   21篇
  1982年   26篇
  1981年   10篇
  1980年   34篇
  1979年   15篇
  1966年   4篇
  1964年   5篇
  1959年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
为满足超高速撞击典型Whipple防护构型的损伤评估需求,利用图像处理技术对碎片云序列阴影图像进行深入研究。使用超高速序列激光阴影成像仪得到三组不同实验条件下碎片云发展过程的高清阴影图像,分别对每组最具代表性的2帧进行图像处理分析;根据碎片云图像特点以及碎片运动特性,提出了一种改进的碎片二次特征匹配算法,该方法包含碎片粗定位、特征定义及初匹配和精确匹配三步策略;通过运用改进的匹配算法,对选取的相邻两帧图片完成碎片高效匹配,并提取匹配碎片的运动参数,进而分析碎片的速度分布和飞行角度分布,获取二次碎片云相关运动特性;得到三组实验各自的轨迹模拟图。根据得到的轨迹分析结果分别对三组实验的后板损伤进行估计,并通过与防护构型的实际损伤结果进行比较,验证了该方法的有效性。  相似文献   
72.
《Ceramics International》2021,47(18):25551-25557
Silicon carbide surface modification is still a challenging task. Its modification mechanism is also still unclear. This paper provides a study of the surface modification mechanism of KH5X0 (X = 5, 6, 7, 8, 9) on the silicon carbide (111) using density functional theory. The electronic structures and densities of states of KH5X0 (X = 5, 6, 7, 8, 9) on SiC surfaces indicates that the surface modification mechanism is attributed to the electronic effects of the functional groups of KH5X0 (X = 5, 6, 7, 8, 9). From the results the easier it is for a functional group to obtain electrons, the better the modifying performance of silane coupling agent will be. Furthermore, the interface energy results showed that silicon carbide (111) modification performance by KH580 silane and KH590 silane is better than KH550, KH560, and KH570. The present work provides theoretical guidance for the fabrication of SiC heat sink products.  相似文献   
73.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
74.
Polyoxymethylene dimethyl ethers are recognized as the prospective diesel additive to decrease the pollutant emission from the light-duty vehicles, which can be polymerize form the monomer of dimethoxymethane (DMM). The industrial synthesis of DMM is mainly involved two-step process: methanol is oxidized to form the formaldehyde in fixed bed reactor and then reacted with the generated formaldehyde through acetalization in continuous stirred-tank reactor. Due to huge energy consumption, this typical synthesis route of DMM needs to be upgraded and more green routes should be determined. In this review, four state-of-the-art one-step direct synthetic routes, including two upgrading routes (methanol direct oxidation and direct dehydrogenation) and two green routes (methanol diethyl ether direct oxidation and carbon oxides direct hydrogenation), have been summarized and compared. Combination with the reaction mechanism and catalytic performance on the different catalysts, the challenges and opportunities for every synthetic route are proposed. The relationships between catalyst structure and property in different synthesis strategy are also investigated and then the suggestions of the design of catalyst are given about future research directions that efforts should be made in. Hopefully, this review can bridge the gap between newly developed catalysts and synthesis technology to realize their commercial applications in the near future.  相似文献   
75.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
76.
《Ceramics International》2022,48(4):5168-5173
In this work, a cement-bonded corundum-spinel (Al2O3–MgAl2O4) pre-cast refractory brick with two typical Al2O3 aggregates was designed as the refractory lining. Corroded microstructure of the used corundum-spinel bricks after industrial trials in a commercial RH refining ladle was analyzed. Degradation processes of two types of alumina aggregates in the same corroded interface also were discussed. Typical corroded microstructure revealed that needle-like calcium hexaaluminate (CA6) was observed in the matrix of the original layer. The formation of CA6 was attributed to the reactions with pure calcium aluminate cement and matrix components under a high-temperature gradient during refining. Furthermore, the corrosion process of the used Al2O3–MgAl2O4 bricks would be discussed based on a post-mortem microstructural characterization, and the corrosion mechanism of the two types of aggregates was also elucidated.  相似文献   
77.
《Ceramics International》2022,48(17):24592-24598
Single-phase Al4SiC4 powder with a low neutron absorption cross section was synthesized and mixed with SiC powder to fabricate highly densified SiC ceramics by hot pressing. The densification of SiC ceramics was greatly improved by the decomposition of Al4SiC4 and the formation of aluminosilicate liquid phase during the sintering process. The resulting SiC ceramics were composed of fine equiaxed grains with an average grain size of 2.0 μm and exhibited excellent mechanical properties in terms of a high flexure strength of 593 ± 55 MPa and a fracture toughness of 6.9 ± 0.2 MPa m1/2. Furthermore, the ion-irradiation damage in SiC ceramics was investigated by irradiating with 1.2 MeV Si5+ ions at 650 °C using a fluence of 1.1 × 1016 ions/cm2, which corresponds to 6.3 displacements per atom (dpa). The evolution of the microstructure was investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The breaking of Si–C bonds and the segregation of C elements on the irradiated surface was revealed by XPS, whereas the formation of Si–Si and C–C homonuclear bonds within the Si–C network of SiC grains was detected by Raman spectroscopy.  相似文献   
78.
《Ceramics International》2022,48(8):10579-10591
In present study, we report a V doping fabrication method for obtaining rod-like MgO crystals decorated with a nanoflake layer. This novel structure has only been minimally reported in literature. Pure MgO and Mg2V2O7–MgO composite materials were obtained by precipitation and impregnation methods, with vanadium added concentrations of 0–9%. The influence of V doping on crystal structure and particle morphology of MgO was investigated by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis demonstrated that MgO has a cubic structure, while X-ray photoelectron spectroscopy (XPS) revealed that V5+ exists on the surface of MgO. The specific surface areas and pore sizes of MgO composites were calculated by BET and BJH analysis. These techniques revealed that specific surface area and pore size of MgO increased due to vanadium doping. The antibacterial effects of Mg2V2O7–MgO composite materials against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were assessed using a bacterial killing/colony-forming unit (CFU) assay and bacteriostatic ring method. Our results demonstrate that V doping dramatically improved antimicrobial properties of MgO, with 7 mol% doping inducing the best antibacterial activity. The antibacterial mechanisms of Mg2V2O7–MgO composite material were also proposed.  相似文献   
79.
The CO_2 sensing of PrFeO_3 and NdFeO_3 sensors were investigated. Experimental results show that the resistances for PrFeO_3 and NdFeO_3 in CO_2 gas are larger than those in air and the responses for PrFeO_3and NdFeO_3 sensors increase with an increase in room-temperature relative humidity. When exposed to1000 ppm CO_2, the response of PrFeO_3 thick film based on nano-powders annealed at 700℃can reach8.44 at 160℃for the background of wet air with 58%of room-temperature relative humidity (RH),which is much larger than the corresponding value (3.03) in wet air with 25%RH. The sensing response S of NdFeO_3 thick-film sensor based on nano-powders annealed at 600℃to 3000 ppm CO_2 at the operating temperature 200℃can reach 2.36 for the background of wet air with 72%RH, which is larger than the corresponding value (1.83) in the air with 25%RH. Compared with other CO_2 sensing materials, the PrFeO_3 sensor has larger response at lower operating temperature for CO_2 gas and may be used as a new CO_2 sensing material.  相似文献   
80.
针对平面并联机构无奇异位置工作空间求解困难、过程繁琐、计算量大等问题,提出了基于CAD求解平面并联机构工作空间的三维螺旋扫描方法。将[n]自由度平面并联机构分解成[n]条支链进行独立分析,得到每条支链下末端执行器的可达区域,再将所有支链可达区域取交集即为平面并联机构工作空间。应用SolidWorks软件建立平面并联机构模型,进行几何特征处理,通过自动求解器求解,将求解过程图形化,快速得到同轴布局5R机构和平面3-RPR并联机构的无奇异位置工作空间。通过同轴布局5R机构的运动学实验,验证了该求解方法的可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号